Search this Site

Rockwell B-1 Lancer- Design

A B-1 lancer in flight. For the full description page, click here.
The B-1 Lancer is a supersonic United States Air Force strategic bomber with variable-sweep wings. It was introduced on October 1st, 1986, which enough range and payload to be able to replace the B-52 Stratofortress, but was developed into a primary subsonic low-level, long-range penetrator. The Lancer serves as the supersonic-capable bomber of the United States Air Force's long-range bomber force, which comprises of the sub-sonic B-52 Stratofortress, as well as the also sub-sonic, B-2 Spirit.

B-1B drawing.


The B-1 has a blended wing body configuration, with variable-sweep wing, triangular fin control surfaces and four turbofan engines, to improve range and speed with enhanced survivability. Forward swept wing settings are used for takeoff, landings and high-altitude maximum cruise. Aft swept wing settings are used in high subsonic and supersonic flight. The wings of the B-1B originally were cleared for use at settings of 15, 25, 55, and 67.5 degrees. The 45-degree setting was later cleared in 1998–99 timeframe.

The length of the aircraft presented a serious flexing problem due to air turbulence at low altitude. To alleviate this, Rockwell included small canards near the nose on the B-1. An accelerometer would actuate the canards automatically to counteract turbulence and smooth out the ride.

A B-1B cockpit at night. For the full description page, click here.

Unlike the B-1A, the B-1B made no attempt at Mach 2+ speeds. Its maximum speed at altitude is Mach 1.25 (about 950 mph or 1,530 km/h), but its low-level speed increased to Mach 0.92 (700 mph, 1,130 km/h). Technically, the current version of the aircraft can exceed its speed restriction, but not without risking potential damage to its structure and air intakes. The B-1A's engine was modified slightly to produce the F101-102, with an emphasis on durability, and increased efficiency. The core of this engine has since been re-used in several other engine designs, including the F110 which has seen use in the F-14 Tomcat, F-15K/SG variants and most recent versions of the F-16 Fighting Falcon. It is also the basis for the non-afterburning F118 used in the B-2 Spirit bomber and the U-2S. However its greatest success was forming the core of the extremely popular CFM56 civil engine, which can be found on some versions of practically every small-to-medium sized airliner. It includes with an "Alert Start" panel on the nosegear, which quickly activated the engines upon order to scramble.

The B-1's offensive avionics include the Westinghouse (now Northrop Grumman) AN/APQ-164 forward-looking offensive passive electronically scanned array radar set with electronic beam steering (and a fixed antenna pointed downward for reduced radar observability), synthetic aperture radar, ground moving target indicator (MTI), and terrain-following radar modes, Doppler navigation, radar altimeter, and an inertial navigation suite. From 1995 on, the B-1B Block D upgrade added a Global Positioning System receiver.

The B-1's defensive electronics include the Eaton AN/ALQ-161 radar warning and defensive jamming equipment, linked to a total of eight AN/ALE-49 flare dispensers located on top behind the canopy, which are handled by the AN/ASQ-184 avionics management system. The AN/ALE-49 dispenser has a capacity of 12 MJU-23A/B flares each. The MJU-23A/B flare is one of the world's largest infrared countermeasure flares having a gross weight of ~1170 g. The cylindrical Magnesium/Teflon/Viton pellet has a net weight of ~1470 g. The Plans for a defensive systems upgrade program (DSUP) were cancelled for budgetary reasons. The B-1 has also been equipped to carry the ALE-50 Towed Decoy System. The Lancer has an additional Doppler tail-warning radar to detect aircraft or missiles approaching from the rear.

Also aiding the B-1's survivability is its relatively low radar cross-section (RCS). Although not technically a stealth aircraft in a comprehensive sense, thanks to the aircraft's structure, serpentine intake paths and use of radar-absorbent material its RCS is about 1/50th that of the B-52 (probably about 26 ft²/2.4 m²), although the Lancer is not substantially smaller in mass than the Stratofortress.

The B-1 has been upgraded since production through the "Conventional Mission Upgrade Program". This multi-stage program added a new MIL-STD-1760 smart-weapons interface that enables the use of the Joint Direct Attack Munition and other precision-guided conventional weapons, such as the Wind Corrected Munitions Dispenser (WCMD), the AGM-154 Joint Standoff Weapon (JSOW), and the AGM-158 JASSM (Joint Air to Surface Standoff Munition). Future precision munitions include the GBU-39 Small Diameter Bomb. These and other improvements are intended to ensure that the B-1 will be viable through approximately 2020. In addition, the Air Force has recently announced a program to keep the aircraft flying until at least 2040.

B-1B at R.I.A.T. 2004. For the full description page, click here.


1. General characteristics

  • Crew: 4 (aircraft commander, copilot, offensive systems officer and defensive systems officer)
  • Length: 146 ft (44.5 m)
  • Wingspan:
    • Extended: 137 ft (41.8 m)
    • Swept: 79 ft (24.1 m)
  • Height: 34 ft (10.4 m)
  • Wing area: 1,950 ft² (181.2 m²)
  • Airfoil: NA69-190-2
  • Empty weight: 192,000 lb (87,100 kg)
  • Loaded weight: 326,000 lb (148,000 kg)
  • Max takeoff weight: 477,000 lb (216,400 kg)
  • Powerplant: 4× General Electric F101-GE-102 augmented turbofans
    • Dry thrust: 14,600 lbf (64.9 kN) each
    • Thrust with afterburner: 30,780 lbf (136.92 kN) each
  • Fuel capacity, optional: 10,000 U.S. gal (38,000 L) fuel tank for 1-3 internal weapons bays each

2. Performance

  • Maximum speed: Mach 1.25 (950 mph, 1,529 km/h) at altitude (Mach 0.92, 700 mph, 1,130 km/h at low level)
  • Range: 6,478 nmi (7,456 mi, 11,998 km)
  • Combat radius: 2,993 nmi (3,445 mi, 5,543 km)
  • Service ceiling: 60,000 ft (18,000 m)
  • Wing loading: 167 lb/ft² (816 kg/m²)
  • Thrust/weight: 0.37

3. Armament

  • Hardpoints: six external hardpoints for 59,000 lb (27,000 kg) of ordnance (use for weapons currently restricted by START I treaty) and 3 internal bomb bays for 75,000 lb (34,000 kg) of ordnance to carry from:
  • Missiles:
    • 24× AGM-158 JASSM
    • 12× AGM-154 JSOW
  • Bombs:
    • 84× Mk-82AIR inflatable retarder general purpose bombs
    • 81× Mk-82 low drag general purpose bombs
    • 84× Mk-62 Quickstrike sea mines
    • 8× Mk-65 naval mines
    • 30× CBU-87/89/CBU-97 Cluster Bomb Units (CBU)
    • 30× CBU-103/104/105 WCMD
    • 24× GBU-31 JDAM GPS guided bombs
    • 15× GBU-38 JDAM GPS guided bombs (Mk-82 general purpose warhead)
    • 24× Mk-84 general purpose bombs
    • 96× or 144× GBU-39 Small Diameter Bomb GPS guided bombs
    • 16x B61 thermonuclear variable-yield gravity bombs


  • 1× Westinghouse AN/APQ-164 forward-looking offensive passive phased-array radar
  • 1× Eaton AN/ALQ-161 radar warning and defensive jamming equipment
  • 1× AN/ASQ-184 defensive management system
  • 1× Lockheed Martin Sniper XR targeting pod.

No comments: